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| Abstract

ik finite-element analysis is carried out for small-amplitude free
vibration of laminated, anisotropic, rectangular plates having arbitrary
boundary conditions, finite thickness-shear moduli, rotatory inertia, and
bimodulus action (different elastic properties depending upon whether the
fiber-direction strain is tensile or compressive). The element has five
degrees of freedom, three displacements and two slope functions, per node.
An exact closed-form solution is also presented for the special case of
freely supported single-layer orthotropic and two-layer, cross-ply plates.
This provides benchmarks to evaluate the validity of the finite-element anal-
ysis. Both solutions are compared with numerical results existing in the
literature for special cases (all for ordinary, not bimodulus, materials) and

good agreement is obtained.
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Introduction

Structural uses have been increasing for laminates consisting of multi-
ple layers of fiber-reinforced composite materials. Consequently, there is
an increasing need for more realistic mathematical modeling of the material
behavior for incorporation into static and dynamic structural analyses.
Certain fiber-reinforced materials have been found experimentally to exhibit
quite different elastic behavior depending upon whether the fiber-direction
strain (ef) is tensile or compressive [1-3]. Examples of such materials are
tire cord-rubber, reinforced solid propellants, and some biological tissues.
Although the stress-strain behavior of such materials is actually curvilinear,
it is often approximated as being bilinear, with different slopes (elastic
properties) depending upon the sign of g Thus, they are called bimodulus
composite materials.

The limited number of previous analyses of bimodulus-material plates

were reviewed in [4-6],:and all were limited to static analyses. Thus, it is

believed that the present work is the first vibrational analysis of such

plates. The present work is not limited to just thin plates of isotropic bi-

modulus material, rather it is applicable to moderately thick plates laminated

of orthotropic bimodulus material. Two formulations are presented and solved:

one is a mixed finite-element formulation with five degrees of freedom per

node, and the other is an exact closed-form solution.

Governing Equations

Mindlin's linear dynamic theory [7] of moderately thick plates was first
extended to plates laminated of ordinary (not bimodulus) monoclinic elastic

material by Yang, Norris, and Stavsky (YNS)[8]. Later, Wang and Chou [9]
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showed that a slightly different version of the YNS theory, presented by
Whitney and Pagano [10], is more accurate than the original version [8].
Here, this class of theory is extended to bimodulus-material laminates.

The origin of a Cartesian coordinate system is taken to be in the mid-
plane (xy plane) of the plate with the z axis being normal to this plane and
directed positive downward.

Using the fiber-governed symmetric material model introduced in [11],
we take the generalized Hooke's law for the in-plane action in each layer (&)

to be of the following bimodular form:

ox Q]lkz Qlen Q]sz €x
% 7| Yake %ok ks | €y (1)
Txy Neke Yo6ke Ye6ks | | Txy

Here the stresses (ax,ay,rxy) and engineering strains (ex.ey.yxy) are denoted
in the usual fashion, and the Q's are the plane-stress-reduced stiffnesses
(symmetric array). The first two subscripts of the Q's are those classically
used in anisotropic elasticity [12] and composite-material mechanics [13].
Here the third subscript (k) refers to the sign of the fiber-direction strain
(k=1 for tension and k=2 for compression), and £ refers to the layer number
(2=1,2,...,n, where n is the total number of layers).
It is assumed that the thickness-shear behavior is unaffected by bi-

modular action, thus

Tyz Cuy Cyus Yyz 2)

Tyz Cus Css | | vy,




The stress and moment resultants, each per unit length, are expressed

in terms of stresses as

h/2

(Nx’Ny'ny'QX'Qy) = J-h/z ("x"’y"'xy“xz’ryz) dz (3)
h/2

(MMM, ) = j-h/Z (000,17 )2 42 (4)

The displacement components, u, v, and w in the x, y, and z directions,
respectively, can be expressed in terms of mid-plane displacements u°, v°,

w® and slope functions Vy and wy as:

u = 0(0y,t) + 2, (6y,t) 5 v = vO(0yt) + 2 (xyt)

(5)
w = w(x,y,t)
where t is time.
The constitutive equations for an unsymmetric cross-ply laminate are:
— - \
/ 0
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My Big Bz 0 Dy Dyp O Yy.y
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and
Qy _ Sy O Wyt -
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Here differentiation is denoted by a cooma, i.e., ( )‘x = a( )/ax,
and the extensional, flexural-extensional coupling, and flexural stiffnesses

of the laminate are defined by
h/2
= 2
(Ry32B45:05) J-h/Z (Q44)(1,2,22)¢dz (8)

1,j=1,2,6

Also, the thickness-shear stiffnesses of the laminate are defined by

= 2 i=

where the K§ are the thickness-shear correction coefficients, which can be
determined by various approaches, cf. [12].

In addition to performing the integrations in a piecewise manner from
layer to layer, one also has to take into consideration the possibility of
different elastic properties (tension or-compression) within a layer. This
is explained in detail for a two-layer cross~-ply laminate in Appendix A.

Taking into account the coupling and rotatory inertias, one can write

F the equations of motion as follows:

.. - o
1 ‘ Nx,x * ny.y Puspe * Rwx,tt:
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Here P, R, and I are the normal, coupling, and rotatory inertia co-

efficients per unit mid-plane area and are defined by




where p is the materia
Substituting equa

equations of motion.

IL,,]

where [Lkz] is a symme

following elements:

L11 = Alld)z("'AGGd; - Pd

0(1,2,2%) dz - (1)

(PRI) = [hIZ

1 density.
tions (6) and (7) into equations (10), we obtain the

In operator form, we have

( uo‘ (o)

vO 0

w =<0 > (12)
hwy 0
Lh"'xJ ~°J

k,2=1,2,3,4,5

tric linear differential operator matrix with the

2 - . =
t H le = (A12+A65)dxdy ’ L13 =0

Liy = [(B12+Bee)/h1d,dy 5 Lys 2 (Bu/h)di#(ees/h)d;- (R/h)d2

- 2 2 2 - . - 2 2 2
L22 = Assdx+A22dy-Pdt . L23 = 0 ) LZ“ = (Bss/h)dx+ (Bzz/h)dy‘ (R/h)dt

2 2
Lys =Ly, 3 L3zs=- Sssdi-sudyi-Pdt
(13)

L3“ z - (S‘#‘i/h)dy H L35 z - (Sss/h)dx
Ly = (Dg/n" ) + (Dp2/h7)d] - (Syu/h”) - (1/h%)e2

- 2
Lys = [(D12+Dgg)/h?1d,d,
Lss = (Dy2/h°)d2+ (Dsslhz)d;- (Sss/h%) - (I/h%)dy & d, = afax, etc.
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Application to Plate Freely Supported on all Edges

The boundary conditions on all edges are freely supported (simply sup-

ported without in-plane normal restraint).

Along the edges at x=0and x = a,
WS wy = Mx =0
o = =
v = Nx 0
(14)
Along the edges at y=0and y = b,
W=y = ”y =0
o = =
u Ny 0
Closed-Form Solution
The governing equations (12) and the boundary conditions (14) are
exactly satisfied in closed form by the following set of functions:
u® = U cos ax sin sy glot
v® = V sin ax cos gy e'*t
W= W sin ax sin gy et (15)
hwy = Y sin ax cos By elut
hy, = X cos ax sin gy elut

Here, w is the natural frequency associated with the mode having axial and

transverse wave numbers m and n, and
azm/a , B = nm/b : (16)

where a and b are plate dimensions in the x and y directions, respectively.
Substituting solutions (15) into the governing equations (12), we
obtain the following:
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)
(v (0] ]
v 0
[C,d {wp=<Jo0p (17)
Y 0
(x) Lo
k,2=1,2,3,4,5
where ckz is a 5x5 symmetric determinant containing the following elements:
cll Z - Allaz'Assaz"'piDz H Clz S - (A12+A66)°3 H C13 =0 N
cl“ z - [(BIZ+BGG)/h]°’B H C15 s - (Bll/h)(!z‘ (Bsslh)82+(R/h)w2
Cyp = - ASSGZ-AZZBZ"'PNZ H C23 =0
Cay = - {Bgg/h)a2 - (By,/h)2+ (R/h)w2 5 Cus = Cyy

(18)
- (Suu/h)B

3 C33 : - (Sssqz‘l’StuZ'sz) ’ C3|,.

Cas = - (Sgs/h)a 3 Cyy = = (Dgg/h2)a? < (Dya/h?)82 - (Sy,/h2) + (1/h2)w?
E. Cys = - [(D;5+Dgg)/h2Jas
s Css = - (Dy1/h2)a? - (Dgg/h2)82 - (Sg5/h2) + (I1/h2)w?

The frequency w can be determined by setting Ickzl = 0.

To determine the z-position of the fiber-direction neutral surface, one

; sets
= o =
Ef ef + z’(f 0

or

an 2 - Egle . A (19)




Thus, z__ = - hU/X and z,., =" hV/Y. An iterative procedure is used to obtain

nx y
the final displacement ratios and corresponding frequency.

Finite-Element Formulation

e SRS

An exact closed-form solution to equations (12) can be obtained only
under special conditions of geometry, edge conditions, loadings, and lamination.
Here we present a simple finite-element formulation which does not have any
limitations (except for those implied in the formulation of the governing
equations)[15].

Suppose that the region R is subdivided into a finite number N of sub-
regions: finite e1ements,‘Re(e-1,2,...,N). Over each element the general-

ized displacéments (uo,vo,w,wx.wy) are interpolated according to

0 r 1 r S
"‘f”i¢i"’"§"i¢i"”?"i‘1
(20)
p 3 p 3
b Doty Yy g By ¢,

where ¢? (a=1,2,3) is the interpolation function corresponding to the i-th

node in the element. Note that the in-plane displacements, the transverse
displacement, and the slope functions are approximated by different sets of
interpolation functions. While this generality is included in the formu-

lation (to indicate the fact that such independent approximations are possible),
we dispense with it in the interest of simplicity when the element is actually
programmed and take ¢; = ¢§ = ¢: (r=s=p). Here r,s, and p denote the number

of degrees of freedom for each variable. That is, the total number of degrees

of freedom per element is 2r + s + 2p.




Substituting equations (20) into the Galerkin integrals associated with

the operator equation (12), which must also hold in each element Re’

j [L]1{&6}{¢}dxdy = O
R

e

(21)

and using integration by parts once (to distribute the differentiation

equally between the terms in each expression), we obtain

—— ey s b

[K22][K23][K24][K25]
[K33][K34][K35]
Symmetric [K4u][K4S]

ness matrix are given by

KI} = A;16]; + Agel);
Kiz = A,63) + ASGGJ{
K13 =0

Ky = Bll”?j + Bss”¥j
K13 = B HYY + Begh)
ki3 = AzzGiJ + Asseij
K} =0

K3y = BogHiy + B oHy

Ekl1][K12][K13][K14][K153

[Kssl

respectively, and the elements K?? (a,8=1,2,...

K§§
SH
ki3
Kgg
i
K33
i

r{uﬂ

{v}
{w}
{wx

Yy

}
}/

BgH

= SssS.

= SssR

= SuuRyo

=D,T

= DggTh s

D;,T

X

iJ
X

iJ
X0
ij
ij
X

iJ
Xy
ij
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+ BzzHy

+ skksy

+ DGGT¥

+ DggT3) xy

+ DzzT

ij

(22)

where the {u}, {v}, etc. denote the columns of the nodal values of u,v,

»5) of the symmetric stiff-

(23)

SssTS,

0
+ SuuTij
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Gij I*R ¢i,s¢j.n dxdy (i,§=1,2,...,r)
e
En 1 3 i o . ia
Hij JR $5,e%5.n dxdy (i=1,2,...,r ; §=1,2,...,t)
e
En - 1 2 . . iz
Mij JR. ¢i,5¢j,n dxdy (i=1,2,...,r 5 §=1,2,...,8)
¢ (24)
En _ 2 2 s el
Sij f}z 5, e%5.n dxdy (1,3=1,25...,8)
e
gn - 2 3 ‘e . i
Rij [12 ¢i,g¢j n dxdy (1=1,2,...,58 3 j=1,2,...,t)
e
gn _ 3 3 s
Tij J %5,2%5,n dxdy (§,321,2,...,8)
e

(g,n=0,x,y)

and e?? = G}, etc. In the special case in which o3 = o3 = 83> all of the

LB
matrices in equations (24) coincide.

| In the present study, elements of the serendipity family are employed
with the same interpolation for all of the variables. The resulting stiffness
matrices are 20 by 20 for this four-node element and 40 by 40 for the eight-
node element. Reduced integration [16] must be used to evaluate the matrix
coefficients in equations (23). That is, if the four-node rectangular element
is used, the 1x1 Gauss rule must be used in place of the standard 2x2 Gauss

rule to numerically evaluate the coefficients Kij'

Substituting solution (22) into equations (19), we get

e . _.,e , 8 . .. __ e ,e
z us, /¥ I SRR LV (25)




Numerical Results

Computations using the closed-form and finite-element solutions were
carried out on an IBM 370 computer. Since there is no previous analysis
for vibration of bimodulus plates, the present results could be compared
only with those for rectangular plates laminated of ordinary materials.
Comparisons with the fundamental-frequency results of Jones [17] for thin
plates and Fortier and Rossettos [18] for thick and thin plates are pre-
sented in Tables 1and 2. It can be seen that the agreement is good. \

As examples of some actual bimodulus materials, two composites used in
automobile tires, aramid-cord/rubber and polyester-cord/rubber, are selected.
The material properties used are listed in Table 3. These are based on the
experiments of Patel et al. [2] and are the same data used in [6] with the
addition of the specific-gravity values, which were estimated on the basis
of the volume fractions. The numerical results for single-layer 0° ortho-
tropic and two-layer cross-ply plates are presented in Tables 4 and 5-6,
respectively. As can be seen from these tables, again the agreement is
good.

There may be a question regarding the effect of bimodulus action on
plate stiffness in different portions of each cycle. For example, Fig. 1
represents a single-layer bimodulus-material plate at the two extremes of its
deflection. Figure 1(a) depicts the initial half cycle, during which the top
surface is in compression and the bottom in tension, thus causing the neutral
surface for €y to be positive (znx > 0), i.e., below the plate midplane a
certain distance. Figure 1(b) depicts depicts the latter half cycle, during

which the top surface is now in tension and the bottom in compression, thus
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causing z.. to be negative, i.e., to fall above the plate midplane. However,
the absolute value of Zox is identical to its value in the first half cycle.
Thus, it can be concluded that the the frequency associated with the second
half cycle is identical to that of the first half cycle and either modal
shape, Fig. 1(a) or 1(b), will give the same computational result for the
natural frequencies.

Now consider a two-layer laminate with the bottom layer (layer 2=1)
oriented at 0 degrees and the top layer (2=2) at 90 degrees; see Fig. 2.
Initially, as shown in Fig. 2(a), the neutral surface for €y falls below the
interface, within the (-degree layer, while the neutral surface for €y falls
above the interface, completely within the 90-degree layer. In the latter
portion of the cycle, Fig. 2(b), the €y neutral surface falls outside of
the 0-degree layer, and the €y neutral surface falls outside of the 90-degree
layer. Thus, compressive properties are used for the entire O-degree layer,
and tensile ones for the 90-degree layer.

Ffom the above considerations for a two-layer cross-ply laminate, it is
clear that the plate stiffnesses acting in the two portions of a cycle are
different and thus the associated frequencies are also different, except in
the case of a square plate. Denoting the frequencies associated with the two
portions of a cycle by w; and w,, it can be shown from the standpoint of
energy conservation that the average frequency (w) over the entire cycle

must be given by
w b= (1/2) (0] + wp?) . (26)

Thus, the computational procedure used for a cross-ply plate is to calculate
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w, and w, associated with modal shapes shown in Figures 2(a) and 2(b), respec-

tively, and then to apply equation (26).

Concluding Remarks

A finite element has been developed to analyze the small-deflection free
vibration of laminated, anisotropic, rectangular thick plates of bimodulus
material. The results obtained agree well with those of an exact, closed-form
solution derived for such a plate freely supported on all four edges. Thus,
it is concluded that the element has been validated and may be used for com-

putations involving more complicated boundary conditions.
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APPENDIX A

DERIVATION OF THE PLATE STIFFNESSES FOR TWO-LAYER
CROSS-PLY LAMINATE O BIMODULUS MATERIAL

In problems involving laminates comprised of bimodulus-material layers,
it is necessary to evaluate the integral forms involved in the definitions of
the plate stiffnesses, equation (8). The derivation presented here is for the
case of a two-layer cross-ply laminate.

Each layer is assumed to be of the same thickness, h/2, and the same
orthotropic elastic properties with respect to the fiber direction. Since
each layer is oriented at either 0° or 90° to the x axis, the laminate is also
orthotropic, i.e., there are no stiffnesses with subscripts 16 and 26. The
bottom layer is denoted as layer 1, i.e., 2=1 in Qijkz’ and occupies the thick-
ness space from 2=0 to z=h/2, where 'z is measured positive downward from the
midplane. The top layer is denoted as layer 2, i.e., 2=2, and occupies the
thickness space from z=-h/2 to z=0.

In the first case derived here, it is assumed that the upper portion of
the top layer (£=2) is in compression (k=2 in Qijkz) in the fiber direction
and that the lower portion of the top layer is in tension (k=1), while the
inner portion of the bottom layer (2=1), from z=0 to 252 is in compression
(k=2), while the outer portion (from z,, to h/2) of layer 1 is in tension
(k=1). .

Thus, the general integral expression for Aij’ in equation (8), may be

taken as the sum of the integrals for each of these regions:

17
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Case 1
(0.5 > Zx >0, -0.5 < Zy < 0)

h/2
Asj J-h/Z Qe 92
Jzny q ) 0 0 g Znx q h/2 0 )
= z+ J .iqn dZ + J dz + J 14 dZ A-1
_h2 H322 2oy ij12 0 L (A-1)

Since the planar reduced stiffnesses Qijkz are each respectively constant

in the appropriate regions, equation (A-1) integrates to the following result:

Ais = Qg2 + Quy1pd(0/2) + Q4551 - Q450902
(A-2)
+ Q4522 - Y1202y
or
Ayg = (/20Q4500 + Quy0p) * (Qy401 - Q51902
(A-3)
*+ (@502 - Q51202
Similarly

h/2
Bij = J-hlz ZQisz dz

4 0 4 h/2

ny nx
= I 201j22 dz + I 201312 dz + Io zQijZl dz + Iz

2Q;..y 92 (A-4)
imn
-h/2 ny nx

Z

= (- Qidzz + ij1])(h2/8) + (01j2] - Q1J]1)(an2/2)
_ (A-5)
* Q522 = Q) (zgy2/2)

or
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Byg/h? = (1/8)(= Qyypp + Qyymi) + (O3 - Oy (2,%/2)

+ (Qijzz - Qijlz)(zyzlz)

Also

D,. = dz

[ 20

-2 1K
Zny ) ) Znx ) /2 ,
- J 220550092+ 2%Q45792 *jo i 92t Py

-h/2 zny nx

= (QijZZ + Qijl])(h3/24) + (QijZI - Qijll)(znx3/3)
* Q22 = Qyy72)(2py/3)
or

Dij/h3 = (1/28)(Qy59 *+ Qgqp) * (Q4597 - Qy5197(2,%73)
+ (QiJZZ - Qij]Z)(Zy3/3)

Simitarly

Case 2

( -0.5 < Z, <0, 0.5> Zy > 0)

Asirn = (Qy511* Quya2)/2+ (Q4 500 - Q1202 * (Q4 521 = Q51902

B.'j/hz = (Q'ij” - 0”22)/8+ (01‘122 - Q.Ulz)(ZXZ/Z) + (Q‘ljZ] - Q”n)(zyzlz)

(A-6)

(A-7)

(A-8)

(A-9)

(A-10)
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Case 3

(0.5 > Z >0, 0.5 > Z > 0)

h= Q07 * Qy20)/2 + (Q4557 - Q59902

Bij/hz = (Qij]] 1J22)/8 (Qij21 1J]])(Z /2) (A']])
= Q4597 * Q45020728 + Q4557 - Q4571)(2,373)
Case 4
(-05<2,<0,-05<2,<0)
A/t = Q410 * Q4522072 * Q4500 = Q41202
Bis/h? = Q97 = Q4520078 * (Q4595 - Q512)(2,%/2) (A-12)

Dij/ha = (Qij]] + Qij22)/24 + (Qijzz - Qij]z)(zy3/3)

In the presence of excessively high in-plane loads, such as those due to
excessive heating of the midplane or due to large deflections, the neutral
surfaces can go outside of the thickness of the laminate and, thus, make it
act as it were homogeneous. However, this does not occur for small-deflection
free vibrations and thus the equations for these cases are not presented

here.

Single 0° Layer
IIZ | < 5.55
X
g/ = (Qug0p * Quyp9)72 * Q459 - Q45030

Dyy/h® = (Quyqq * Quyp1)/28 + (Qy599 - Q599023 ]
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Table 1. Comparison of fundamental natural frequencies (m=n=1) of rectangular
antisymmetric cross-ply plates at different aspect ratios and thick- "
nesses (511/522340. 612/522=613/Ezz=623/522’0~5, v12=0.25, K5=K§=5/6)

Dimensionless frequency m(b/w)z(P/022)5

Aspect
Ratio = =
a/b Thin-plate b/h=50 b/h=10
theory [17] C.F. F.E. C.F. F.E.
0.5 2.24 2.400 2.421 1.942 1.946
1.0 0.865 0.858 0.877 0.794 0.799
1.5 0.65 0.656 0.668 0.612 0.615
2.0 0.606 0.604 0.617 0.565 0.569
2.5 0.59 0.590 0.599 0.548 0.552
3.0 0.580 0.578 0.591 0.541 0.544

*C.F. denotes the closed-form solution and F.E. denotes the finite-
element solution.

Table 2. Comparison of fundamental natural frequencies of square anti-
symmetric cross-ply plates at different thicknesses (E;,/E,,=40,
G12/E22=G;3/E22%1, G23/E22=0.5, v;,=0.25, Kﬁ’Kg’S/G)

b/h Dimensionless frequency wb?(P/E,,h%)"
' Fortier & Rossettos [18] C.F. F.E.
10 10.80 1n.n 11.15

50 11.65 11.82 12.06
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Table 3. Material properties for two tire-cord/rubber,
unidirectional, bimodulus composite materials

Aramid-Rubber Polyester-Rubber

k=1 k=2 k=1 k=2
Longitudinal Young's modulus, GPa 3.58 0.0120 0.617 0.0369
Transverse Young's modulus, GPa 0.00909 0.0120 0.00800 0.0106
Major Poisson's ratio, dimensionlessb 0.416 0.205 0.475 0.185
Longitudinal-transverse shear modulus, GPa° 0.00370 0.00370 0.00262 0.00267
Transverse-thickness shear modulus, GPa 0.00290 0.00499 0.00233 0.00475
Specific gravity, dimensionless 0.970 1.00

%Fiber-direction tension is denoted by k=1, and fiber-direction compression
by k=2.

bIt is assumed that the minor Poisson's ratio is given by the reciprocal
relation.

®It is assumed that the longitudinal-thickness shear modulus is equal to
this one.

TR
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Table 4. Dimensionless fiber-direction neutral-surface locations
and fundamental frequencies for single-layer 0° ortho-
tropic plates having b/h=10 by two methods (closed form
and finite element)

Aspect Zy = Z5,/h wb2(P/ES,h3)%
Ratio
a/b C.F. F.E. C.F. F.E.
Aramid-Rubber:
0.5 0.4484 0.4484 19.065 19.255
0.6 0.4484 0.4475 14.339 14.564
0.7 0.4467 0.4468 11.324 11.515
0.8 0.4467 0.4458 9.304 9.553
0.9 0.4445 0.4450 7.893 8.019
1.0 0.4433 0.4435 6.877 7.062
1.2 0.4404 0.4413 5.554 5.782
1.4 0.4373 0.4370 4.766 4.968
1.6 0.4338 0.4340 4.263 4.443 -
1.8 0.4301 0.4338 3.925 4.092
2.0 0.4262 0.4302 3.688 3.856
Polyester-Rubber:
0.5 0.3089 0.3083 25.134 23.136
: 0.6 0.3089 0.3076 19.110 18.046
i 0.7 0.3072 0.3071 15.058 14.421
0.8 0.3072 0.3064 12.226 11.955
0.9 0.3056 0.3056 10.180 10.023
_ 1.0 0.3056 0.3049 8.668 8.648
§ 1.2 0.3030 0.3031 6.647 6.698
1.4 0.3011 0.3013 5.42) 5.533
; 1.6 0.2990 0.2997  4.643 4.796
| 1.8 0.2969 0.2977 4.128 4.265
2.0 0.2945 0.2950 3.777 3.918

— - -
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Table 5. Dimensionless neutral-surface locations in the first and second portions
of a cycle for iwo-layer, gross-ply plates having b/h=10 by closed-form
and finite-element methods

(1) (1) (2) (2)
Z, Z, Z, Z,
a/b__ C.F. F.E. C.F. F.E. C.F. F.E. C.F. F.E.

Aramid-Rubber:

0.5 0.4457 0.4458 -0.0648 -0.0660 -0.0171 -0.0170 0.4247 0.4257
0.6 0.4446 0.4446 -0.0563 -0.0554 -0.0206 -0.0205 0.4303 0.4309

0.7 0.4434 0.4436 -0.0490 -0.0491 -0.0240 -0.0238 0.4338 0.4344

0.8 0.4421 0.4421 -0.0432 -0.0429 -0.0275 -0.0274 0.4363 0.4365

0.9 0.4408 0.4408 -0.0385 -0.0386 -0.0311 -0.0306 0.4381 0.4379

1.0 0.4394 0.4394 -0.0347 -0.0344 -0.0347 -0.0346 0.4394 0.4394

1.2 0.4366 0.4366° -0.0293 -0.0289 -0.0424 -0.0416 0.4412 0.4415 ;

1.4 0.4335 0.4337 -0.0250 -0.0249 -0.0494 -0.0497 0.4423 0.4426 ’

1.6 0.4301 0.4302 -0.0218 -0.0217 -0.0565 -0.0559 0.4423 0.4433

1.8 0.4265 0.4264 -0.0193 -0.0193 -0.0635 -0.0662 0.4437 0.4437

2.0 0.4228 0.4237 -0.0174 -0.0175 -0.0705 -0.0700 0.4437 0.4442
Polyester-Rubber:

0.5 0.3687 0.3691 -0.1335 -0.1295 -0.0830 -0.0825 0.3569 0.357

0.6 0.3675 0.3677 -0.1213 -0.1203 -0.0844 -0.0844 0.3588 0.359

0.7 0.3664 0.3663 -0.1119 -0.1113 -0.0868 0. 0.

0.8 0.3653 0.3653 -0.1050 -0.1049 -0.0895 0. 0.

0.9 0.3642 0.3641 -0.0999 --0.0999 -0.0926 0.

1.0 0.3632 0.3633 -0.0960 -0.0960 -0.0959 0.

1.2 0.3611 0.3611 -0.0906 -0.0905 -0.1033 0

1.4 0.3589 0.3596 -0.0870 . -0.0870 -0.1115 0.

1.6 0.3565 0.3564 -0.0846 -0.0844 -0.1202 0.

1.8 0.3540 0.3538 -0.0829 -0.0829 -0.1294 0.

2.0 0.3514 0.3513 -0.0817 -0.0817 -0.1389 0
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Table 6. Dimensionless fundamental frequencies in the first partial cycle,
second partial cycle and complete cycle of motion for two-layer,
cross-ply plates having b/h=10 by closed-form and finite-element

methods ™t
w1b?(P/ES,h’) wab?(P/ES,0) % wb?(P/ES,h3)%
a/b C.F. . F.E. C.F. F.E. C.F. F.E.
Aramid-Rubber:
0.5 19.38 20.23 13.88 14.55 16.18 16.93
0.6 14.65 15.32 11.05 11.69 12.60 13.26
0.7 11.60 12.17 9.353 9.807 10.35 10.86
0.8 9.537 9.825 8.269 8.635 8.860 9.192
0.9 8.088 8.488 7.543 7.879 7.806 8.172
1.0 7.038 7.386 7.038 7.364 7.038 7.375
1.2 5.661 5.928 6.402 6.727 6.008 6.302
1.4 4.838 5.045 6.037 6.356 5.371 5.625
1.6 4,313 4.536 5.812 6.088 4.951 5.199
1.8 3.960 4,116 5.655 5.910 - 4,658 4.852
2.0 3.712 3.909 5.551 5.821 4.449 4.677
_ Polyester-Rubber:
0.5 19.12 19.81 15.95 16.61 17.39 18.07
0.6 14.42 14.98 12.26 12.79 13.25 13.80
0.7 11.43 11.92 10.04 10.45 10.69 11.14
0.8 9.435 9.855 8.632 9.014 9.016 9.416
0.9 8.059 8.421 7.71 8.144 7.881 8.280
1.0 7.084 7.406 7.085 7.394 7.085 7.400
1.2 5.856 6.111 6.337 6.613 6.081 6.352
1.4 5.164 5.407 5.928 6.193 5.520 5.773
1.6 4.748 4.986 5.694 5.928 5.178 5.416
1.8 4,485 4.693 5.543 5.778 4,958 5.179
2.0 4.310 4.518 5.435 5.688 4.807 5.036

+Here w) and w, denote the frequencies corresponding to the first and
second portions of a cycle, respectively, and w denotes the effective frequency
for an entire cycle.
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(a) First half cycle (b) Second half cycle

Fig. 1 Bimodulus action during the two half cycles of motion of a single-
layer bimodulus plate. Shaded material is in longitudinal tension.

c-:x=0
ey=0

(a) First portion of cycle (b) ~Second portion of cycle

Fig. 2 Bimodulus action during the two portions of motion of a two-layer
plate in the fundamental mode of vibration. Bottom layer is in
x direction (0°), top layer is in y (90°). Shaded portions are in
tension in the respective fiber directions.
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